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Simple model for granular friction
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We propose a simple phenomenological model to describe the motion of a plate on granular layers pushed
at a constant speed. The model contains the order parameter characterizing the transition from a solidlike state
to a liquidlike state. The model reproduces the hysteresis in frictional force and the universal profile of the slip
velocity, which are observed in experiment. Our model predicts that the area of hysteresis loop depends on the
pushing speed.S1063-651X%99)13910-2

PACS numbdps): 81.05.Rm, 45.05:x, 05.20.Dd, 05.70.Jk

I. INTRODUCTION 1. MODEL

Our approach is inspired by the phenomenological model
Recently, much attention has been paid to physics oproposed by Carlson and Batigthl]. They assume that the
granular materials. Unlike usual solids, liquids, or gasesfriction dynamics is characterized by the coupled equations
granular materials are known to show complex dynamicafOf the displacement of the plate and the order parameter that
behaviors[1], such as convectiof2], size segregatiofd], ~ SPecifies the state of granular particles.

standing waves and localized excitations under vertical vi- \We also adopt a phenomenology which is a set of coupled
bration[4], and 1f*? spectra in a narrow tubfé]. equations of the displacement and the order parameter. How-

ever, our model contains two essential differences from

Friction in granular layers is an interesting subject of fun- heirs. Fi £ all ke i h L
damental physics. This subject is also important in the physt- eirs. First of all, we taxe into account some characteristics

ics of earthquake6,7]. The simplest situation in which to g;&%g'?g{gr&lﬁgﬁm mrztnhuc?(g?E'\gi{ic\:/:lgécgzlslg sILaniarl_rd
consider granular friction is the following. Place a plate on,. g9 , Pe ke, 2d. N par

. . ticular, we regard Coulomb’s friction law during the colli-
lubricants such as granular particles and push the plate at

; _sion of particles as one of the key points concerning granular
constant speed. When the speed is low, we can observe snc% P yP 99

i . f the pl hil high d ictions. Namely, the shear friction between two colliding
slip motion of the plate, while at high speeds we can see @, jar particles is proportional to the relative velocity for

steady sliding of the plate. Similar behaviors have been obgm | relative velocity and is a constant which is the Cou-
served even in atomic dry friction and and melt fractures inomp's |aw for large relative velocity in granular collisions.
polymers[8,9]. Recently, Nasuno and co-worke50] re-  Therefore, our frictional term is not proportional to the rela-
ported a sensitive measurements of frictional forces protive velocity of layers, but the friction is saturated when the
duced by granular particles in the above situation. Theyelative velocity is large. This friction mechanism is thought
found that the frictional force is multi-valued and exhibits ato be important in recovering the characteristic hysteresis
hysteresis, whereas the frictional force is almost a constardbserved in the experimehtQ]. Second, we introduce the
when the slip velocity is decreased. They also reported &acture mechanism of the stress network in granular layers
universal form in instantaneous velocity profile during slip inin our model. This idea reflects recent indications of the im-
the stick-slip regime. portance of bridging and its fractures in friction processes
In this paper, we propose a simple phenomenological14l.
model to describe the physics of granular friction. The situ- Here let us explain our model explicitly. Let the mass of
ation under consideration corresponds to the experimentdhe plate beM, and its center of mass be locatedxatwe
situation by Nasuno and co-workef0]. We will demon- ~ assume that the fr_iction between the granular layers and the
strate that the universal form in slip velocity profile can beblock is characterized by the order paramefigrwhere 6

observed in our model, which is quite similar to the experi-:_l represents a solidlike state, i.e., the grains_ are in contact
mental one. In the limit of low driving speed, the velocity with each other and there is a stress network in the granular

layers. The plate is pushed by a driving motor with the con-
stant speedV; the plate is connected to the motor by a
Hookian spring(the spring constark).

Thus, the equations of the block are given by

profile can be represented by an analytic function.

The organization of this paper is as follows. In the next
section, we will introduce our phenomenological model and
explain the physical relevancy of our model. In Sec. Ill, we
will present the result of simulations of our model, in which P
we reproduce some qf chara\_cterlstlc results of _expenments. MX=k(Vt—x)— —W—,uMgFfr(
We also report some interesting new results which have not, IX
to our knowledge, been reported in any experiments. In Sec.

IV, we will discuss our results. Some of our findings can bewhereg and n are, respectively, the gravitational accelera-
understood by analytic consideration in the limit of low driv- tion and the dynamical friction constant. We adopt the fric-
ing speed. In Sec. V, we will give concluding remarks. tion forceF(x) as

X ) .
wv) @
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Fe(x)=tanh(x) for x>0, Fy(x)=bx for x<0, (2) nite. For finite velocity, botlliquid and solid states become

_ keg?
2

locally stable, andh=a(x) is an unstable fixed point. The
where we assume thhtis a large constant, which essentially |ast term in Eq.(4) represents the shear-induced melting
inhibits the motion with negative velocity. Note that the satu-force, which is the same form introduced by Carlson and
ration of the friction in tanh) for large velocity corresponds  Batista in[11].
to Coulomb’s friction law as in the DEM modg12,13. The We make two remarks on our modeling. First, the model
potentialW is given by by Carlson and Batistfil1] in which they adopt®= (1
—6) and the liquid state and the solid state are always an
(Vt—x)? unstable fixed point and a stable fixed point, respectively,
1—exp — T ' 3 may be inadequate to describe the dynamics of phase transi-
tions. Second, we expect that the behavior is not sensitive to
which plays an important role as a resistance force in théhe choice oW and®, as in the case of conventional phase
solidlike state. We adopt here the Gaussian-Taguchi modelfansitions.
introduced in the simulation of fracture mechanidsb],
which has the stress- &W/&Xoc—kyexp(—yzlgz) with the IIl. SIMULATION
deflection of the spring=Vt—x from the natural length and ) .
the critical length¢ for the fracture. Namely, this model L€t us analyze our model. At the first stage we nondimen-
contains a resistance force that cancels the elastic force jonalize the model. The variables in the unit of space, time,
the deflection of the spring for smaji< £, while no resis- and velocity are respectively scaled byg/k, yM/k, and
tance force exists for larges ¢ because of fracture of the 9VM/K. Thus, the dimensionless equations corresponding to
stress network. The reason we introduce a continuous fracds. (1), (3), and(4) are given by
ture model is(i) to represent precursor events before main

slips and(ii) to represent a state in which stress networks are d2. .. . IW dx/dt
partially broken. Note that in our model the static friction is EX=Vt—X— E_MFfr o) )
not introduced explicitly but is replaced by the fracture 0
mechanism of the stress network. R L
We supplement the equation of the motion of the plate . B2 Vt—x)?
with an equation for the order parameter, because a sort of W=—-|1-exg ——= ’ ©®)
phase transition between the solidlike and liquidlike states
plays an important role. It is obvious, as in Eg), that the ~ . ~
stress network plays no role in a liquidlike state but plays an ~d dx|| Jw . dx
essential role in a solidlike state. In other words, we may Taaz® 0.a di —%—g(V) 05' @
regard the order parameter as the density of the stress net-
work.

We restrict our interest to the case k&135 N m 1,
=1.1X10 2 kg, g=9.8 m/¢, and u=0.45. All of these
parameters correspond to the typical setup of the experiment
by Nasuno and co-workefd0]. Thus, the unit length, the
_ _ AW _ unit time, and the unit speed in the dimension-less unit are
70=(0,a(x))—a—0—§(V)0x, (4)  aboutMg/k=0.8 mm, VM/k=9.0x10"2 sec,g/M/k=9
cm/sec in the actual scale. To achieve the stick-slip motion in
where 7 is a characteristic time scale. The first term the very IAOW velocityV region, we mtr(ljuce they o!epen-
®(6,a)=0(6—a(x))(1—6) on the right hand side of Eq. 9€Nce a<L(V)={o/tanhy) and ue(V) =utanhy), with fo
(4) characterizes the dynamics of the “liquid-solid transi- =U=0.1 in the dimensionless unit. Our choice &) and

tion,” where 0 increaseqdecreasgswhen ®>0 (0<0). EIO(V) corresponds to the nonexistence of a characteristic
The point at which® =0 is satisfied is a fixed point. When Velocities in the lowV limit because; ™ *(V) andug(V) can

is a decreasing function of and changes its sign at a be characteristic velocities in the transition from stick-slip
fixed point, the fixed point is stable. In other cases, e.g. anotion to creep if they are constants. The critical length
double root point of®6=0, or where® is an increasing gq_(6) and the time scale in Eq. (7) are assumed to be 0.7
function of 9 at a fixed point, the fixed points are unstable. Inand 3.0¢10°2, respectively. Note that the critical lengéh

Eq.(4), a(x) is assumed to be a function of sliding velocity. getermines the static friction, because the stress network ex-
where we adopa(x) =tanif(x/vo) with a characteristic ve- jsts for Vi —x<Z, while it disappears fok/t — x> &. There-

Io_ci_ty vo (0 satisfy the following_ proper_ties. When there is N0 tore, the choice of=0.7 is from our expectation that the
sliding, the system should be in a solid state. Ttishas a static friction constant is close to 0.7. On the other hand, we

stable fixed point aW=1 corresponding to the solid state - .
choose smalt, because we may expect that the time scale of

and =0 is the double root o =0 when the velocity is A A
zero. The system should be in a liquid state when the slidin hase change between liquids and solids is much shorter than
e time scale for the oscillation of springs. The dimension-

velocity is infinite. Thus, we assume thét1 becomes the ) 7 )
double root of® =0 and a stable fixed point exists @0,  |ess parameteng, in a(2) in Eq. (4) andb in Eq. (2) are set
corresponding to the liquid state, when the velocity is infi-to bevy=vy/(gyM/k)=1.0 andb=bMg/k=10" respec-

We assume that the equation of the order parameter i@l
similar to a time dependent Ginzburg-Landau equalios]
as in the usual dynamics of phase transitions,



4502 HISAO HAYAKAWA PRE 60

1.4 T T T T 0.8
Force ——

12 Order Parameter —— J 0.7
B e T | D —
g 1r L 1 0.6

%,

E &
~ 0.8 r 1 g 0.5
3] = 00000
9 5
5 o / - £ o4
! g
z 04 r 1 0.3
i /

02 r T 0.2

0 1 1 l\\ﬂ 1 1 0.1 1 I I I 1
100 120 140 160 180 200 0 0.05 0.1 0.15 0.2 0.25 0.3
Time Velocity

FIG. 1. A typical time evolution of dimensionless frictional FIG. 3. The hysteresis loop of the friction fordé%/dAtz—(\A/f
201432 (/53 ; ; N T

force d*x/dt . (Vt—=x) and the order parametet during ? slip —X) in dimensionless unit as a function of dimensionless slip ve-
event around =150. We show the data in the first slip for=5 locity d/dt for driving speed?=0.01
X103, o

In Fig. 3, we plot the dimensionless frictional force
(d?/dt?)x— Vt—x as a function of slip velocity. As in Fig.
s 3 we obtain a hysteresis loop for the friction which is similar
=10"". . . .

to that observed in the experiment. Hysteresis loops, how-

At first we simulate the model for relatively low, where ever, depend o in our model. In our simulation, the area

typical stick-slip motion of the block can be observed. FlgureOf the hysteresis becomes narrower, when the driving veloc-

1 shows typical behavior of a dimensionless frictional force. o :
) on ) Ron e i , ity becomes slower. To check quantitative behavior of the
defined by @“x/dt°) —Vt+x and 6 during a slip event. The

order parameter is a little larger than its stable value rea of hysteresis lodX(V) as a function oV, we evaluated

before/after the slip. During the phase change from the solid® aréa of the loop for eac¥ as follows. First, we distin-
state to the liquid state, the frictional foréand deflectionis ~ guish the data fodX/dt>10"3 from others. For one loop,
quickly reduced because the stress network has been brokewe evaluated the area of the lo§by reducing the area of
In Fig. 2, we plot the profile of slip velocity, where the upper branclg, defiped through the time derivative of
=0 is fixed at the end of slip events. All the data betweenthe frictional force @/dt)f;>0 and enlarging that of the
V=25%x10"% and 2.5¢10"3 seem to be on a universal lower branchS defined by @/dt)f;<0, S=S,— S, based
curve as in the experiment. Although we can observe stickon trapezoid's rule a§,==;(f;+f;.1)|v;+1—Vi|/2, where

slip motion for largerV, the profile depends ol in such ~M=u orl, andf; andv; are, respectively, the frictional force

versal part of the profile near the start of slip, where thedata betweel=2.5x 10"* and 1.0 10~ 2 can be fitted by a

tively. We adopt the classical fourth order Runge-Kutta
method for numerical integration with the time intervet

velocity is greater for larg&/ value than for small/. power law(see Fig. 4
03 — S=cV¥, ¢=0.248, @=0.547+0.033. (8)
y(®)
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FIG. 2. Instantaneous dimensionless velod®/dt as a func- 0.0001 Dﬁvir?éogilocity oot

tion of dimensionless timfeduring slip in the stick-slip regime. The

origins of the pulses are forced to agree at the end of each event. FIG. 4. Log-log plot of the dimensionless ar&V) of the
The solid curve is—0.272 sinf) which is obtained by the classical hysteresis loop evaluated from Fig. 3 as a function of driving ve-
Amontons-Coulomb’s law. locity V. The solid line represents(V) = 0.248/°54"
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) ~ The time dependence of velocityis represented by a posi-
Thus, the area may become zero in the low velocity limit,tive part of the sinusoidal curve whose amplitude is
which means that the transition from the static friction state,/jm/k(u.—«)g in the low V limit, which satisfies V2

to the dynamic friction state is instantaneous as in the clasxy(y, —y,)2/m=mg?(u— u)/k.

sical Amontons-Coulomb law. The result in E@) is an The results in the area of the hysteresis curve are indirect
interesting one which to our knowledge has not been reayigence that our model is reduced to the Amontons-
ported in experiments. We are not sure whether the actugt,,lomb model. Thus, we try to compare our data on slip

experiments reproduce such a power law or how this law ige|qcity with that by the Amontons-Coulomb law. The solid
structurally stable. This result should be checked by experig i Fig. 1 is the theoretical predictiond{dt)x(t)=

ments and direct simulation based on DEM to verify the oA oA ; N
validity of our picture. At present we do not know how to —ASin(H(d¥dy) with A=0.272 in the slow/ limit, where
produce such a power law. We also found that the fépge ~ H(X)=1 forx=0 andH(x) =0 for otherwise. Note that the

the upper branch of the loop defined above obeys amplitude of the slip velocity is yq—Y2)VM/k in the
Amontons-Coulomb limit ¥—0). Thus, the dimensionless

amplitude is deduced to bhe;— x. The static friction con-

stant may be evaluated b§=0.7, andu=0.45. Thus we
expect that the dimensionless amplitude is close to 0.25. In

whereF(x)_ is a universal functlo_niFlg. 9. Since the expo- other words, the static friction constant evaluated from our
nentg is different fromea, we believe that the power law in

Eq. (8) comes from complicated combinations of severals'mUIa_tion is 0.72, V\.IhiC'h isa Iﬁttle larger thar=0.7. Thus,.
processes. the universal behavior in low is thought to be the state in

which the inertia of spring motion can be neglected.
The results reported here are consistent with experimental
IV. DISCUSSION results on stick-slip motiofil0]. For example, we need the

Our model may reduce to the classical Amomons_conditionvz_<mgz(,us— w)/K in order to reach the universal
Coulomb model in the limit 0¥ — 0, which can be analyzed '@W governing the velocity profile of slip. In Ref10] the
by elementary mechanics. The elementary analysis can géliversal law is satisfied belngllfiﬂ'“ m/s for k
outlined as follows. The plate is stationary fge=Vt—x  — 139 N/m. We, thus, obtaitV°k/[mg*(us—u)]=0.083,
<y,=uMgl/k from the natural length, wherg is the where we estimateg ;= 0.65 and,u=0.45. from experimen-
static friction constant. The slip motion of the block is non- {@! data. Therefore, the universal behavior of the slip is only
dissipative, and it conserves the enerBy= M (v—V)? ob_servable in the slow velocity region as in our m(_)del simu-
+(KkI2)(y—Y,)2, where equilibrium positiory, is given by Iatlo.n. Note_ that we can observg a little asymme.tnc velocity
uMg/k. The trajectory in the phase spagg\() is a semi- prpflle of slip in the actgal experimeft0]. We believe that
circle whose center is atyg,V) and its radius is given by this asymmetric behavior can be understood by the occur-

W2 (KIMY(y,—y,)2 The plate stops whey becomes rence of creep motion before the main slip. In fact, even in
2y,—y and)%e ﬁaté is at [r)est durinpg)21(—y'$;/V Thus  Our simulation, we can observe a small asymmetry in the
2 1 2 . ’

one period from the beginning of one slip to the beginning 01,oroflle, where thg velocity before the main slip is larger than
Lo that after the main event.
the next slip is given by

This model obviously describes the transition from the
stick-slip motion to a periodic oscillatiofsee Fig. 6. Unfor-
Y17 Yo tunately, however, this model is not appropriate to describe a
IMVZIK+ (Y1—y,)2 steady sliding motion. To describe the transition from the
periodic motion to the steady sliding motion we may need to
X \VM/Ik+2(y1—Yy2)/V. replace Eq(1) by, e.g.,

fi=F(x/VP); B=0.78, 9)

T=2[ m—sin !
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P X . simulation, which is now in progress. The result of our DEM
Mx=k(Vt—x)— 5W—MM9Ffr W — M yX, simulation will be reported elsewhere.
(10) V. CONCLUSION

wherey should be small for consistency with the result for  In conclusion, we propose a simple phenomenological
smallV. The existence of such a friction term ensures relaximodel for granular friction. Our model reproduces some
ation to a steady sliding motion. We should not be surprisedtharacteristic results observed by Nasuno and co-workers
by the existence of the term proportionalstpbecause the [10] in stick-slip motion, such as the universal velocity pro-
collective motion of granular particles inside layers is com-file in the slip and hysteresis loops. Our model shows that the
plicated and crucial under the high shear rate. However, warea of hysteresis loo§ depends on the driving velocity as
will not discuss the details of this model because at preser®~V°>*. Our model also can describe the transition to an

the connection between collective motion of grains and théscillating region as the driving velocity increases, but is not
term y)'( is not clear. appropriate for describing of steady sliding motion.

Our result reported here may crucially depend on our
choice of(V) andug(V). If we changeZ(V) andug(V) as
constants, we observe creep motion in the MVimit, but V The author thanks S. Sasa and S. Nasuno for their useful
dependence on hysteresis disappears. Our model cannot peemments. This work was partially supported by the Grant-
dict the change of spatial structure during slips, nor can iin-Aid for Science Research Fund from the Ministry of Edu-
predict the order parameter. To clarify unclear points andtation, Science and CulturéGrant Nos. 09740314 and
check the results reported here, we need to carry out DEM1740228.
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