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Simple model for granular friction
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Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

~Received 13 November 1998; revised manuscript received 2 June 1999!

We propose a simple phenomenological model to describe the motion of a plate on granular layers pushed
at a constant speed. The model contains the order parameter characterizing the transition from a solidlike state
to a liquidlike state. The model reproduces the hysteresis in frictional force and the universal profile of the slip
velocity, which are observed in experiment. Our model predicts that the area of hysteresis loop depends on the
pushing speed.@S1063-651X~99!13910-2#

PACS number~s!: 81.05.Rm, 45.05.1x, 05.20.Dd, 05.70.Jk
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I. INTRODUCTION

Recently, much attention has been paid to physics
granular materials. Unlike usual solids, liquids, or gas
granular materials are known to show complex dynam
behaviors@1#, such as convection@2#, size segregation@3#,
standing waves and localized excitations under vertical
bration @4#, and 1/f 4/3 spectra in a narrow tube@5#.

Friction in granular layers is an interesting subject of fu
damental physics. This subject is also important in the ph
ics of earthquakes@6,7#. The simplest situation in which to
consider granular friction is the following. Place a plate
lubricants such as granular particles and push the plate
constant speed. When the speed is low, we can observe s
slip motion of the plate, while at high speeds we can se
steady sliding of the plate. Similar behaviors have been
served even in atomic dry friction and and melt fractures
polymers @8,9#. Recently, Nasuno and co-workers@10# re-
ported a sensitive measurements of frictional forces p
duced by granular particles in the above situation. Th
found that the frictional force is multi-valued and exhibits
hysteresis, whereas the frictional force is almost a cons
when the slip velocity is decreased. They also reporte
universal form in instantaneous velocity profile during slip
the stick-slip regime.

In this paper, we propose a simple phenomenolog
model to describe the physics of granular friction. The si
ation under consideration corresponds to the experime
situation by Nasuno and co-workers@10#. We will demon-
strate that the universal form in slip velocity profile can
observed in our model, which is quite similar to the expe
mental one. In the limit of low driving speed, the veloci
profile can be represented by an analytic function.

The organization of this paper is as follows. In the ne
section, we will introduce our phenomenological model a
explain the physical relevancy of our model. In Sec. III, w
will present the result of simulations of our model, in whic
we reproduce some of characteristic results of experime
We also report some interesting new results which have
to our knowledge, been reported in any experiments. In S
IV, we will discuss our results. Some of our findings can
understood by analytic consideration in the limit of low dri
ing speed. In Sec. V, we will give concluding remarks.
PRE 601063-651X/99/60~4!/4500~5!/$15.00
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II. MODEL

Our approach is inspired by the phenomenological mo
proposed by Carlson and Batista@11#. They assume that the
friction dynamics is characterized by the coupled equati
for the displacement of the plate and the order parameter
specifies the state of granular particles.

We also adopt a phenomenology which is a set of coup
equations of the displacement and the order parameter. H
ever, our model contains two essential differences fr
theirs. First of all, we take into account some characteris
of the distinct element method~DEM!, which is a standard
method for simulating granular particles@2,12,13#. In par-
ticular, we regard Coulomb’s friction law during the coll
sion of particles as one of the key points concerning gran
frictions. Namely, the shear friction between two collidin
granular particles is proportional to the relative velocity f
small relative velocity and is a constant which is the Co
lomb’s law for large relative velocity in granular collisions
Therefore, our frictional term is not proportional to the rel
tive velocity of layers, but the friction is saturated when t
relative velocity is large. This friction mechanism is thoug
to be important in recovering the characteristic hystere
observed in the experiment@10#. Second, we introduce th
fracture mechanism of the stress network in granular lay
in our model. This idea reflects recent indications of the i
portance of bridging and its fractures in friction process
@14#.

Here let us explain our model explicitly. Let the mass
the plate beM, and its center of mass be located atx. We
assume that the friction between the granular layers and
block is characterized by the order parameteru, where u
51 represents a solidlike state, i.e., the grains are in con
with each other and there is a stress network in the gran
layers. The plate is pushed by a driving motor with the co
stant speedV; the plate is connected to the motor by
Hookian spring~the spring constantk).

Thus, the equations of the block are given by

Mẍ5k~Vt2x!2
]

]x
W2mMgFfrS ẋ

u0~V!
D , ~1!

whereg and m are, respectively, the gravitational acceler
tion and the dynamical friction constant. We adopt the fr
tion forceF fr(x) as
4500 © 1999 The American Physical Society
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PRE 60 4501SIMPLE MODEL FOR GRANULAR FRICTION
F fr~x!5tanh~x! for x.0, F fr~x!5bx for x,0, ~2!

where we assume thatb is a large constant, which essential
inhibits the motion with negative velocity. Note that the sa
ration of the friction in tanh(x) for large velocity correspond
to Coulomb’s friction law as in the DEM model@12,13#. The
potentialW is given by

W5
kuj2

2 F12expS 2
~Vt2x!2

j2 D G , ~3!

which plays an important role as a resistance force in
solidlike state. We adopt here the Gaussian-Taguchi mo
introduced in the simulation of fracture mechanics@15#,
which has the stress2]W/]x}2ky exp(2y2/j2) with the
deflection of the springy5Vt2x from the natural length and
the critical lengthj for the fracture. Namely, this mode
contains a resistance force that cancels the elastic forc
the deflection of the spring for smally!j, while no resis-
tance force exists for largey@j because of fracture of th
stress network. The reason we introduce a continuous f
ture model is~i! to represent precursor events before m
slips and~ii ! to represent a state in which stress networks
partially broken. Note that in our model the static friction
not introduced explicitly but is replaced by the fractu
mechanism of the stress network.

We supplement the equation of the motion of the pl
with an equation for the order parameter, because a so
phase transition between the solidlike and liquidlike sta
plays an important role. It is obvious, as in Eq.~3!, that the
stress network plays no role in a liquidlike state but plays
essential role in a solidlike state. In other words, we m
regard the order parameter as the density of the stress
work.

We assume that the equation of the order paramete
similar to a time dependent Ginzburg-Landau equation@16#
as in the usual dynamics of phase transitions,

tu̇5Q„u,a~ ẋ!…2
]W

]u
2z~V!u ẋ, ~4!

where t is a characteristic time scale. The first ter
Q(u,a)[u„u2a( ẋ)…(12u) on the right hand side of Eq
~4! characterizes the dynamics of the ‘‘liquid-solid tran
tion,’’ where u increases~decreases! when Q.0 (Q,0).
The point at whichQ50 is satisfied is a fixed point. Whe
Q is a decreasing function ofu and changes its sign at
fixed point, the fixed point is stable. In other cases, e.g
double root point ofQ50, or whereQ is an increasing
function ofu at a fixed point, the fixed points are unstable.
Eq. ~4!, a( ẋ) is assumed to be a function of sliding velocit
where we adopta( ẋ)5tanh2(ẋ/v0) with a characteristic ve-
locity v0 to satisfy the following properties. When there is n
sliding, the system should be in a solid state. Thus,Q has a
stable fixed point atu51 corresponding to the solid sta
and u50 is the double root ofQ50 when the velocity is
zero. The system should be in a liquid state when the slid
velocity is infinite. Thus, we assume thatu51 becomes the
double root ofQ50 and a stable fixed point exists atu50,
corresponding to the liquid state, when the velocity is in
-
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nite. For finite velocity, both~liquid and solid! states become
locally stable, andu5a( ẋ) is an unstable fixed point. The
last term in Eq.~4! represents the shear-induced melti
force, which is the same form introduced by Carlson a
Batista in@11#.

We make two remarks on our modeling. First, the mo
by Carlson and Batista@11# in which they adoptQ5u(1
2u) and the liquid state and the solid state are always
unstable fixed point and a stable fixed point, respective
may be inadequate to describe the dynamics of phase tra
tions. Second, we expect that the behavior is not sensitiv
the choice ofW andQ, as in the case of conventional pha
transitions.

III. SIMULATION

Let us analyze our model. At the first stage we nondim
sionalize the model. The variables in the unit of space, tim
and velocity are respectively scaled byMg/k, AM /k, and
gAM /k. Thus, the dimensionless equations correspondin
Eqs.~1!, ~3!, and~4! are given by

d2

d t̂2
x̂5V̂t̂2 x̂2

]Ŵ

] x̂
2mF frS dx̂/d t̂

û0~V̂!
D , ~5!

Ŵ5
uĵ2

2 F12expS 2
~V̂t̂2 x̂!2

ĵ2 D G , ~6!

t̂
d

d t̂
u5QXu,aS dx̂

d t̂
D C2

]Ŵ

]u
2 ẑ~V!u

dx̂

d t̂
. ~7!

We restrict our interest to the case ofk5135 N m21,
M51.131022 kg, g59.8 m/s2, andm50.45. All of these
parameters correspond to the typical setup of the experim
by Nasuno and co-workers@10#. Thus, the unit length, the
unit time, and the unit speed in the dimension-less unit
about Mg/k50.8 mm, AM /k59.031023 sec, gAM /k59
cm/sec in the actual scale. To achieve the stick-slip motio
the very low velocityV region, we introduce theV depen-
dence asẑ(V)5z0 /tanh(V) and û0(V)5ū tanh(V), with z0

5ū50.1 in the dimensionless unit. Our choice ofẑ(V) and
û0(V) corresponds to the nonexistence of a characteri
velocities in the lowV limit becausez21(V) andu0(V) can
be characteristic velocities in the transition from stick-s
motion to creep if they are constants. The critical lengthĵ in
Eq. ~6! and the time scalet̂ in Eq. ~7! are assumed to be 0.
and 3.031022, respectively. Note that the critical lengthĵ
determines the static friction, because the stress network
ists for V̂t̂2 x̂, ĵ, while it disappears forV̂t̂2 x̂. ĵ. There-
fore, the choice ofĵ50.7 is from our expectation that th
static friction constant is close to 0.7. On the other hand,
choose smallt̂, because we may expect that the time scale
phase change between liquids and solids is much shorter
the time scale for the oscillation of springs. The dimensio
less parametersv0 in a( ż) in Eq. ~4! andb in Eq. ~2! are set
to be v̂05v0 /(gAM /k)51.0 andb̂5bMg/k5104, respec-
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4502 PRE 60HISAO HAYAKAWA
tively. We adopt the classical fourth order Runge-Ku
method for numerical integration with the time intervalD t̂
51025.

At first we simulate the model for relatively lowV̂, where
typical stick-slip motion of the block can be observed. Figu
1 shows typical behavior of a dimensionless frictional for
defined by (d2x̂/d t̂2)2V̂t̂1 x̂ andu during a slip event. The
order parameter is a little larger than its stable value
before/after the slip. During the phase change from the s
state to the liquid state, the frictional force~and deflection! is
quickly reduced because the stress network has been bro

In Fig. 2, we plot the profile of slip velocity, wheret̂
50 is fixed at the end of slip events. All the data betwe
V̂52.531024 and 2.531023 seem to be on a universa
curve as in the experiment. Although we can observe st
slip motion for largerV, the profile depends onV̂ in such
regions. Even in the universal region, we can find a nonu
versal part of the profile near the start of slip, where
velocity is greater for largeV̂ value than for smallV̂.

FIG. 1. A typical time evolution of dimensionless frictiona

force d2x̂/d t̂22(V̂t̂2 x̂) and the order parameteru during a slip

event aroundt̂5150. We show the data in the first slip forV̂55
31023.

FIG. 2. Instantaneous dimensionless velocitydx̂/d t̂ as a func-

tion of dimensionless timet̂ during slip in the stick-slip regime. The
origins of the pulses are forced to agree at the end of each e

The solid curve is20.272 sin(t̂) which is obtained by the classica
Amontons-Coulomb’s law.
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In Fig. 3, we plot the dimensionless frictional forc
(d2/d t̂2) x̂2V̂t̂2 x̂ as a function of slip velocityV̂. As in Fig.
3 we obtain a hysteresis loop for the friction which is simil
to that observed in the experiment. Hysteresis loops, h
ever, depend onV̂ in our model. In our simulation, the are
of the hysteresis becomes narrower, when the driving ve
ity becomes slower. To check quantitative behavior of
area of hysteresis loopS(V̂) as a function ofV̂, we evaluated
the area of the loop for eachV̂ as follows. First, we distin-
guish the data fordx̂/d t̂.1023 from others. For one loop
we evaluated the area of the loopS by reducing the area o
the upper branchSu defined through the time derivative o
the frictional force (d/d t̂) f i.0 and enlarging that of the
lower branchSl defined by (d/d t̂) f i,0, S5Su2Sl , based
on trapezoid’s rule asSm5( i( f i1 f i 11)uv i 112v i u/2, where
m5u or l, andf i andv i are, respectively, the frictional forc
and the velocity of thei th data in dimensionless units. Th
data betweenV̂52.531024 and 1.031022 can be fitted by a
power law~see Fig. 4!

S.cV̂a, c50.248, a50.54760.033. ~8!

nt.

FIG. 3. The hysteresis loop of the friction forced2x̂/d t̂22(V̂t̂

2 x̂) in dimensionless unit as a function of dimensionless slip

locity dx̂/d t̂ for driving speedV̂50.01.

FIG. 4. Log-log plot of the dimensionless areaS(V̂) of the
hysteresis loop evaluated from Fig. 3 as a function of driving

locity V̂. The solid line representsS(V̂)50.248V̂0.547.
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PRE 60 4503SIMPLE MODEL FOR GRANULAR FRICTION
Thus, the area may become zero in the low velocity lim
which means that the transition from the static friction st
to the dynamic friction state is instantaneous as in the c
sical Amontons-Coulomb law. The result in Eq.~8! is an
interesting one which to our knowledge has not been
ported in experiments. We are not sure whether the ac
experiments reproduce such a power law or how this law
structurally stable. This result should be checked by exp
ments and direct simulation based on DEM to verify t
validity of our picture. At present we do not know how
produce such a power law. We also found that the forcef i in
the upper branch of the loop defined above obeys

f i5F~ ẋ/Vb!; b.0.78, ~9!

whereF(x) is a universal function~Fig. 5!. Since the expo-
nentb is different froma, we believe that the power law in
Eq. ~8! comes from complicated combinations of seve
processes.

IV. DISCUSSION

Our model may reduce to the classical Amonton
Coulomb model in the limit ofV→0, which can be analyzed
by elementary mechanics. The elementary analysis can
outlined as follows. The plate is stationary fory5Vt2x
,y1[msMg/k from the natural length, wherems is the
static friction constant. The slip motion of the block is no
dissipative, and it conserves the energyE5 1

2 M (v2V)2

1(k/2)(y2y2)2, where equilibrium positiony2 is given by
mMg/k. The trajectory in the phase space (y,v) is a semi-
circle whose center is at (y2 ,V) and its radius is given by
AV21(k/M )(y12y2)2. The plate stops wheny becomes
2y22y1, and the plate is at rest during 2(y12y2)/V. Thus,
one period from the beginning of one slip to the beginning
the next slip is given by

T52H p2sin21S y12y2

AMV2/k1~y12y2!2D J
3AM /k12~y12y2!/V.

FIG. 5. The friction force in a upper branch (dx̂/d t̂.0.3 and the
force decreases with time! as a function of scaled velocity

(dx̂/d t̂)/V̂0.78.
,
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The time dependence of velocityẋ is represented by a pos
tive part of the sinusoidal curve whose amplitude
AM /k(ms2m)g in the low V limit, which satisfies V2

!k(y12y2)2/m5mg2(ms2m)/k.
The results in the area of the hysteresis curve are indi

evidence that our model is reduced to the Amonto
Coulomb model. Thus, we try to compare our data on s
velocity with that by the Amontons-Coulomb law. The sol
line in Fig. 1 is the theoretical prediction (d/d t̂) x̂( t̂ )5

2A sin(t̂)H(dx̂/dt̂) with A50.272 in the slowV̂ limit, where
H(x)51 for x>0 andH(x)50 for otherwise. Note that the
amplitude of the slip velocity is (y12y2)AM /k in the
Amontons-Coulomb limit (V→0). Thus, the dimensionles
amplitude is deduced to bems2m. The static friction con-
stant may be evaluated byĵ50.7, andm50.45. Thus we
expect that the dimensionless amplitude is close to 0.25
other words, the static friction constant evaluated from o
simulation is 0.72, which is a little larger thanĵ50.7. Thus,
the universal behavior in lowV is thought to be the state in
which the inertia of spring motion can be neglected.

The results reported here are consistent with experime
results on stick-slip motion@10#. For example, we need th
conditionV2!mg2(ms2m)/k in order to reach the universa
law governing the velocity profile of slip. In Ref.@10# the
universal law is satisfied belowV51137.27m m/s for k
5135 N/m. We, thus, obtainV2k/@mg2(ms2m)#.0.083,
where we estimatedms50.65 andm50.45 from experimen-
tal data. Therefore, the universal behavior of the slip is o
observable in the slow velocity region as in our model sim
lation. Note that we can observe a little asymmetric veloc
profile of slip in the actual experiment@10#. We believe that
this asymmetric behavior can be understood by the oc
rence of creep motion before the main slip. In fact, even
our simulation, we can observe a small asymmetry in
profile, where the velocity before the main slip is larger th
that after the main event.

This model obviously describes the transition from t
stick-slip motion to a periodic oscillation~see Fig. 6!. Unfor-
tunately, however, this model is not appropriate to describ
steady sliding motion. To describe the transition from t
periodic motion to the steady sliding motion we may need
replace Eq.~1! by, e.g.,

FIG. 6. The oscillation in deflectionV̂t̂2 x̂ as a function of time

t̂ for V̂50.1.
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4504 PRE 60HISAO HAYAKAWA
Mẍ5k~Vt2x!2
]

]x
W2mMgFfrS ẋ

u0~V!
D 2Mg ẋ,

~10!

whereg should be small for consistency with the result f
small V. The existence of such a friction term ensures rel
ation to a steady sliding motion. We should not be surpri
by the existence of the term proportional toẋ, because the
collective motion of granular particles inside layers is co
plicated and crucial under the high shear rate. However,
will not discuss the details of this model because at pres
the connection between collective motion of grains and
term g ẋ is not clear.

Our result reported here may crucially depend on
choice ofz(V) andu0(V). If we changez(V) andu0(V) as
constants, we observe creep motion in the lowV limit, but V
dependence on hysteresis disappears. Our model canno
dict the change of spatial structure during slips, nor ca
predict the order parameter. To clarify unclear points a
check the results reported here, we need to carry out D
od

e
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simulation, which is now in progress. The result of our DE
simulation will be reported elsewhere.

V. CONCLUSION

In conclusion, we propose a simple phenomenologi
model for granular friction. Our model reproduces som
characteristic results observed by Nasuno and co-wor
@10# in stick-slip motion, such as the universal velocity pr
file in the slip and hysteresis loops. Our model shows that
area of hysteresis loopS depends on the driving velocity a
S;V0.547. Our model also can describe the transition to
oscillating region as the driving velocity increases, but is n
appropriate for describing of steady sliding motion.
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